metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42:20D6, C6.1242+ 1+4, (C4xS3):4D4, (C2xQ8):21D6, C4.32(S3xD4), C22:C4:20D6, D6.45(C2xD4), C4.4D4:8S3, C12.61(C2xD4), Dic3:D4:39C2, D6:D4:23C2, C12:3D4:24C2, C4:D12:14C2, (C4xC12):22C22, D6:C4:23C22, (C2xD4).171D6, (C2xD12):9C22, (C6xQ8):12C22, C6.88(C22xD4), C42:2S3:19C2, C2.48(D4oD12), (C2xC6).218C24, Dic3.50(C2xD4), C12.23D4:21C2, (C2xC12).186C23, Dic3:C4:55C22, C3:4(C22.29C24), (C4xDic3):35C22, (C6xD4).153C22, (C22xC6).48C23, C23.50(C22xS3), (S3xC23).63C22, C22.239(S3xC23), (C22xS3).213C23, (C2xDic3).113C23, (C2xS3xD4):16C2, C2.61(C2xS3xD4), (S3xC2xC4):25C22, (C2xQ8:3S3):10C2, (C3xC4.4D4):10C2, (C2xC3:D4):22C22, (C3xC22:C4):28C22, (C2xC4).193(C22xS3), SmallGroup(192,1233)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42:20D6
G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >
Subgroups: 1104 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xS3, C22xC6, C42:C2, C22wrC2, C4:D4, C4.4D4, C4.4D4, C4:1D4, C22xD4, C2xC4oD4, C4xDic3, Dic3:C4, D6:C4, C4xC12, C3xC22:C4, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, S3xD4, Q8:3S3, C2xC3:D4, C6xD4, C6xQ8, S3xC23, C22.29C24, C42:2S3, C4:D12, D6:D4, Dic3:D4, C12:3D4, C12.23D4, C3xC4.4D4, C2xS3xD4, C2xQ8:3S3, C42:20D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, 2+ 1+4, S3xD4, S3xC23, C22.29C24, C2xS3xD4, D4oD12, C42:20D6
(1 22 9 19)(2 20 7 23)(3 24 8 21)(4 13 11 16)(5 17 12 14)(6 15 10 18)(25 32 38 43)(26 44 39 33)(27 34 40 45)(28 46 41 35)(29 36 42 47)(30 48 37 31)
(1 30 10 40)(2 28 11 38)(3 26 12 42)(4 25 7 41)(5 29 8 39)(6 27 9 37)(13 32 23 35)(14 47 24 44)(15 34 19 31)(16 43 20 46)(17 36 21 33)(18 45 22 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8)(2 7)(3 9)(4 11)(5 10)(6 12)(14 18)(15 17)(19 21)(22 24)(25 28)(26 27)(29 30)(31 36)(32 35)(33 34)(37 42)(38 41)(39 40)(43 46)(44 45)(47 48)
G:=sub<Sym(48)| (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48)>;
G:=Group( (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48) );
G=PermutationGroup([[(1,22,9,19),(2,20,7,23),(3,24,8,21),(4,13,11,16),(5,17,12,14),(6,15,10,18),(25,32,38,43),(26,44,39,33),(27,34,40,45),(28,46,41,35),(29,36,42,47),(30,48,37,31)], [(1,30,10,40),(2,28,11,38),(3,26,12,42),(4,25,7,41),(5,29,8,39),(6,27,9,37),(13,32,23,35),(14,47,24,44),(15,34,19,31),(16,43,20,46),(17,36,21,33),(18,45,22,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8),(2,7),(3,9),(4,11),(5,10),(6,12),(14,18),(15,17),(19,21),(22,24),(25,28),(26,27),(29,30),(31,36),(32,35),(33,34),(37,42),(38,41),(39,40),(43,46),(44,45),(47,48)]])
36 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 6D | 6E | 12A | ··· | 12F | 12G | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 6 | 12 | ··· | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 6 | 6 | 12 | 12 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 8 | 8 | 4 | ··· | 4 | 8 | 8 |
36 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D6 | D6 | D6 | D6 | 2+ 1+4 | S3xD4 | D4oD12 |
kernel | C42:20D6 | C42:2S3 | C4:D12 | D6:D4 | Dic3:D4 | C12:3D4 | C12.23D4 | C3xC4.4D4 | C2xS3xD4 | C2xQ8:3S3 | C4.4D4 | C4xS3 | C42 | C22:C4 | C2xD4 | C2xQ8 | C6 | C4 | C2 |
# reps | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 1 | 4 | 1 | 1 | 2 | 2 | 4 |
Matrix representation of C42:20D6 ►in GL6(F13)
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 7 |
0 | 0 | 0 | 0 | 6 | 10 |
0 | 0 | 3 | 7 | 0 | 0 |
0 | 0 | 6 | 10 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 1 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;
C42:20D6 in GAP, Magma, Sage, TeX
C_4^2\rtimes_{20}D_6
% in TeX
G:=Group("C4^2:20D6");
// GroupNames label
G:=SmallGroup(192,1233);
// by ID
G=gap.SmallGroup(192,1233);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,675,570,297,192,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations