Copied to
clipboard

G = C42:20D6order 192 = 26·3

18th semidirect product of C42 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:20D6, C6.1242+ 1+4, (C4xS3):4D4, (C2xQ8):21D6, C4.32(S3xD4), C22:C4:20D6, D6.45(C2xD4), C4.4D4:8S3, C12.61(C2xD4), Dic3:D4:39C2, D6:D4:23C2, C12:3D4:24C2, C4:D12:14C2, (C4xC12):22C22, D6:C4:23C22, (C2xD4).171D6, (C2xD12):9C22, (C6xQ8):12C22, C6.88(C22xD4), C42:2S3:19C2, C2.48(D4oD12), (C2xC6).218C24, Dic3.50(C2xD4), C12.23D4:21C2, (C2xC12).186C23, Dic3:C4:55C22, C3:4(C22.29C24), (C4xDic3):35C22, (C6xD4).153C22, (C22xC6).48C23, C23.50(C22xS3), (S3xC23).63C22, C22.239(S3xC23), (C22xS3).213C23, (C2xDic3).113C23, (C2xS3xD4):16C2, C2.61(C2xS3xD4), (S3xC2xC4):25C22, (C2xQ8:3S3):10C2, (C3xC4.4D4):10C2, (C2xC3:D4):22C22, (C3xC22:C4):28C22, (C2xC4).193(C22xS3), SmallGroup(192,1233)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42:20D6
C1C3C6C2xC6C22xS3S3xC23C2xS3xD4 — C42:20D6
C3C2xC6 — C42:20D6
C1C22C4.4D4

Generators and relations for C42:20D6
 G = < a,b,c,d | a4=b4=c6=d2=1, ab=ba, cac-1=dad=a-1, cbc-1=a2b-1, dbd=b-1, dcd=c-1 >

Subgroups: 1104 in 334 conjugacy classes, 103 normal (29 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xS3, C22xS3, C22xC6, C42:C2, C22wrC2, C4:D4, C4.4D4, C4.4D4, C4:1D4, C22xD4, C2xC4oD4, C4xDic3, Dic3:C4, D6:C4, C4xC12, C3xC22:C4, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, S3xD4, Q8:3S3, C2xC3:D4, C6xD4, C6xQ8, S3xC23, C22.29C24, C42:2S3, C4:D12, D6:D4, Dic3:D4, C12:3D4, C12.23D4, C3xC4.4D4, C2xS3xD4, C2xQ8:3S3, C42:20D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, 2+ 1+4, S3xD4, S3xC23, C22.29C24, C2xS3xD4, D4oD12, C42:20D6

Smallest permutation representation of C42:20D6
On 48 points
Generators in S48
(1 22 9 19)(2 20 7 23)(3 24 8 21)(4 13 11 16)(5 17 12 14)(6 15 10 18)(25 32 38 43)(26 44 39 33)(27 34 40 45)(28 46 41 35)(29 36 42 47)(30 48 37 31)
(1 30 10 40)(2 28 11 38)(3 26 12 42)(4 25 7 41)(5 29 8 39)(6 27 9 37)(13 32 23 35)(14 47 24 44)(15 34 19 31)(16 43 20 46)(17 36 21 33)(18 45 22 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 8)(2 7)(3 9)(4 11)(5 10)(6 12)(14 18)(15 17)(19 21)(22 24)(25 28)(26 27)(29 30)(31 36)(32 35)(33 34)(37 42)(38 41)(39 40)(43 46)(44 45)(47 48)

G:=sub<Sym(48)| (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48)>;

G:=Group( (1,22,9,19)(2,20,7,23)(3,24,8,21)(4,13,11,16)(5,17,12,14)(6,15,10,18)(25,32,38,43)(26,44,39,33)(27,34,40,45)(28,46,41,35)(29,36,42,47)(30,48,37,31), (1,30,10,40)(2,28,11,38)(3,26,12,42)(4,25,7,41)(5,29,8,39)(6,27,9,37)(13,32,23,35)(14,47,24,44)(15,34,19,31)(16,43,20,46)(17,36,21,33)(18,45,22,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,8)(2,7)(3,9)(4,11)(5,10)(6,12)(14,18)(15,17)(19,21)(22,24)(25,28)(26,27)(29,30)(31,36)(32,35)(33,34)(37,42)(38,41)(39,40)(43,46)(44,45)(47,48) );

G=PermutationGroup([[(1,22,9,19),(2,20,7,23),(3,24,8,21),(4,13,11,16),(5,17,12,14),(6,15,10,18),(25,32,38,43),(26,44,39,33),(27,34,40,45),(28,46,41,35),(29,36,42,47),(30,48,37,31)], [(1,30,10,40),(2,28,11,38),(3,26,12,42),(4,25,7,41),(5,29,8,39),(6,27,9,37),(13,32,23,35),(14,47,24,44),(15,34,19,31),(16,43,20,46),(17,36,21,33),(18,45,22,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,8),(2,7),(3,9),(4,11),(5,10),(6,12),(14,18),(15,17),(19,21),(22,24),(25,28),(26,27),(29,30),(31,36),(32,35),(33,34),(37,42),(38,41),(39,40),(43,46),(44,45),(47,48)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E12A···12F12G12H
order122222222222344444444446666612···121212
size11114466121212122224444661212222884···488

36 irreducible representations

dim1111111111222222444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2S3D4D6D6D6D62+ 1+4S3xD4D4oD12
kernelC42:20D6C42:2S3C4:D12D6:D4Dic3:D4C12:3D4C12.23D4C3xC4.4D4C2xS3xD4C2xQ8:3S3C4.4D4C4xS3C42C22:C4C2xD4C2xQ8C6C4C2
# reps1114411111141411224

Matrix representation of C42:20D6 in GL6(F13)

1200000
0120000
000037
0000610
003700
0061000
,
010000
1200000
000010
000001
001000
000100
,
1200000
010000
000100
0012100
0000012
0000112
,
100000
0120000
0012100
000100
0000121
000001

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,3,6,0,0,0,0,7,10,0,0,3,6,0,0,0,0,7,10,0,0],[0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0],[12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,1,1] >;

C42:20D6 in GAP, Magma, Sage, TeX

C_4^2\rtimes_{20}D_6
% in TeX

G:=Group("C4^2:20D6");
// GroupNames label

G:=SmallGroup(192,1233);
// by ID

G=gap.SmallGroup(192,1233);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,675,570,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<